Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341270

RESUMO

Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Reguladores , Humanos , Antígenos CD28 , Linfócitos , Timo
2.
J Clin Invest ; 134(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349740

RESUMO

Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.


Assuntos
Antígenos CD28 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-1/genética , Antígeno B7-H1 , Antígeno CTLA-4/genética , Modelos Animais de Doenças , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores
3.
Cell Mol Immunol ; 21(4): 374-392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383773

RESUMO

CD4+ T cells can "help" or "license" conventional type 1 dendritic cells (cDC1s) to induce CD8+ cytotoxic T lymphocyte (CTL) anticancer responses, as proven in mouse models. We recently identified cDC1s with a transcriptomic imprint of CD4+ T-cell help, specifically in T-cell-infiltrated human cancers, and these cells were associated with a good prognosis and response to PD-1-targeting immunotherapy. Here, we delineate the mechanism of cDC1 licensing by CD4+ T cells in humans. Activated CD4+ T cells produce IFNß via the STING pathway, which promotes MHC-I antigen (cross-)presentation by cDC1s and thereby improves their ability to induce CTL anticancer responses. In cooperation with CD40 ligand (L), IFNß also optimizes the costimulatory and other functions of cDC1s required for CTL response induction. IFN-I-producing CD4+ T cells are present in diverse T-cell-infiltrated cancers and likely deliver "help" signals to CTLs locally, according to their transcriptomic profile and colocalization with "helped/licensed" cDCs and tumor-reactive CD8+ T cells. In agreement with this scenario, the presence of IFN-I-producing CD4+ T cells in the TME is associated with overall survival and the response to PD-1 checkpoint blockade in cancer patients.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD4-Positivos , Células Dendríticas
4.
Int Rev Cell Mol Biol ; 382: 145-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225102

RESUMO

Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Neoplasias/patologia , Linfócitos T , Imunidade Adaptativa , Imunoterapia/métodos , Microambiente Tumoral
5.
Cell Rep Med ; 5(1): 101377, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232703

RESUMO

Current immunotherapies provide limited benefits against T cell-depleted tumors, calling for therapeutic innovation. Using multi-omics integration of cancer patient data, we predict a type I interferon (IFN) responseHIGH state of dendritic cell (DC) vaccines, with efficacious clinical impact. However, preclinical DC vaccines recapitulating this state by combining immunogenic cancer cell death with induction of type I IFN responses fail to regress mouse tumors lacking T cell infiltrates. Here, in lymph nodes (LNs), instead of activating CD4+/CD8+ T cells, DCs stimulate immunosuppressive programmed death-ligand 1-positive (PD-L1+) LN-associated macrophages (LAMs). Moreover, DC vaccines also stimulate PD-L1+ tumor-associated macrophages (TAMs). This creates two anatomically distinct niches of PD-L1+ macrophages that suppress CD8+ T cells. Accordingly, a combination of PD-L1 blockade with DC vaccines achieves significant tumor regression by depleting PD-L1+ macrophages, suppressing myeloid inflammation, and de-inhibiting effector/stem-like memory T cells. Importantly, clinical DC vaccines also potentiate T cell-suppressive PD-L1+ TAMs in glioblastoma patients. We propose that a multimodal immunotherapy and vaccination regimen is mandatory to overcome T cell-depleted tumors.


Assuntos
Glioblastoma , Vacinas , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Antígeno B7-H1 , Macrófagos , Células Dendríticas , Linfonodos/metabolismo , Vacinas/metabolismo
6.
Sci Rep ; 13(1): 5333, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005459

RESUMO

The majority of proteins in mammalian cells are modified by covalent attachment of an acetyl-group to the N-terminus (Nt-acetylation). Paradoxically, Nt-acetylation has been suggested to inhibit as well as to promote substrate degradation. Contrasting these findings, proteome-wide stability measurements failed to detect any correlation between Nt-acetylation status and protein stability. Accordingly, by analysis of protein stability datasets, we found that predicted Nt-acetylation positively correlates with protein stability in case of GFP, but this correlation does not hold for the entire proteome. To further resolve this conundrum, we systematically changed the Nt-acetylation and ubiquitination status of model substrates and assessed their stability. For wild-type Bcl-B, which is heavily modified by proteasome-targeting lysine ubiquitination, Nt-acetylation did not correlate with protein stability. For a lysine-less Bcl-B mutant, however, Nt-acetylation correlated with increased protein stability, likely due to prohibition of ubiquitin conjugation to the acetylated N-terminus. In case of GFP, Nt-acetylation correlated with increased protein stability, as predicted, but our data suggest that Nt-acetylation does not affect GFP ubiquitination. Similarly, in case of the naturally lysine-less protein p16, Nt-acetylation correlated with protein stability, regardless of ubiquitination on its N-terminus or on an introduced lysine residue. A direct effect of Nt-acetylation on p16 stability was supported by studies in NatB-deficient cells. Together, our studies argue that Nt-acetylation can stabilize proteins in human cells in a substrate-specific manner, by competition with N-terminal ubiquitination, but also by other mechanisms that are independent of protein ubiquitination status.


Assuntos
Lisina , Proteoma , Animais , Humanos , Lisina/metabolismo , Proteoma/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Ubiquitinação , Mamíferos/metabolismo
7.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043555

RESUMO

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Glioblastoma/metabolismo , Multiômica , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Nat Commun ; 14(1): 217, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639382

RESUMO

Despite their low abundance in the tumor microenvironment (TME), classical type 1 dendritic cells (cDC1) play a pivotal role in anti-cancer immunity, and their abundance positively correlates with patient survival. However, their interaction with CD4+ T-cells to potentially enable the cytotoxic T lymphocyte (CTL) response has not been elucidated. Here we show that contact with activated CD4+ T-cells enables human ex vivo cDC1, but no other DC types, to induce a CTL response to cell-associated tumor antigens. Single cell transcriptomics reveals that CD4+ T-cell help uniquely optimizes cDC1 in many functions that support antigen cross-presentation and T-cell priming, while these changes don't apply to other DC types. We robustly identify "helped" cDC1 in the TME of a multitude of human cancer types by the overlap in their transcriptomic signature with that of recently defined, tumor-infiltrating DC states that prove to be positively prognostic. As predicted from the functional effects of CD4+ T-cell help, the transcriptomic signature of "helped" cDC1 correlates with tumor infiltration by CTLs and Thelper(h)-1 cells, overall survival and response to PD-1-targeting immunotherapy. These findings reveal a critical role for CD4+ T-cell help in enabling cDC1 function in the TME and may establish the helped cDC1 transcriptomic signature as diagnostic marker in cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Neoplasias/metabolismo , Apresentação de Antígeno , Linfócitos T Citotóxicos , Células Dendríticas , Linfócitos T Auxiliares-Indutores/metabolismo , Microambiente Tumoral
9.
Sci Rep ; 12(1): 20268, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434024

RESUMO

The CD4+ regulatory T (Treg) cell lineage, defined by FOXP3 expression, comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. As a model for Treg cells, studies employ TGF-ß-induced (i)Treg cells generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe how human iTreg cells relate to human blood-derived tTreg and Tconv cells according to proteomic analysis. Each of these cell populations had a unique protein expression pattern. iTreg cells had very limited overlap in protein expression with tTreg cells, regardless of cell activation status and instead shared signaling and metabolic proteins with Tconv cells. tTreg cells had a uniquely modest response to CD3/CD28-mediated stimulation. As a benchmark, we used a previously defined proteomic signature that discerns ex vivo naïve and effector Treg cells from Tconv cells and includes conserved Treg cell properties. iTreg cells largely lacked this Treg cell core signature and highly expressed e.g. STAT4 and NFATC2, which may contribute to inflammatory responses. We also used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naïve Treg cells. iTreg cells contained part of this effector Treg cell signature, suggesting acquisition of pTreg cell features. In conclusion, iTreg cells are distinct from tTreg cells and share limited features with ex vivo Treg cells at the proteomic level.


Assuntos
Linfócitos T Reguladores , Fator de Crescimento Transformador beta , Humanos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Proteômica , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo
10.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100308

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. METHODS: Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. RESULTS: Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1ß in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. CONCLUSIONS: MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.


Assuntos
Neoplasias , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Animais , Anticorpos Monoclonais/uso terapêutico , Contagem de Células , Epitopos , Humanos , Imunoterapia , Macaca mulatta , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
11.
Front Immunol ; 13: 881166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844585

RESUMO

CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Reguladores , Citocinas/metabolismo , Imunidade , Contagem de Linfócitos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo
12.
Oncoimmunology ; 11(1): 2096363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800158

RESUMO

Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
13.
Cell Rep ; 37(7): 110013, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788605

RESUMO

Autotaxin (ATX; ENPP2) produces lysophosphatidic acid (LPA) that regulates multiple biological functions via cognate G protein-coupled receptors LPAR1-6. ATX/LPA promotes tumor cell migration and metastasis via LPAR1 and T cell motility via LPAR2, yet its actions in the tumor immune microenvironment remain unclear. Here, we show that ATX secreted by melanoma cells is chemorepulsive for tumor-infiltrating lymphocytes (TILs) and circulating CD8+ T cells ex vivo, with ATX functioning as an LPA-producing chaperone. Mechanistically, T cell repulsion predominantly involves Gα12/13-coupled LPAR6. Upon anti-cancer vaccination of tumor-bearing mice, ATX does not affect the induction of systemic T cell responses but, importantly, suppresses tumor infiltration of cytotoxic CD8+ T cells and thereby impairs tumor regression. Moreover, single-cell data from melanoma tumors are consistent with intratumoral ATX acting as a T cell repellent. These findings highlight an unexpected role for the pro-metastatic ATX-LPAR axis in suppressing CD8+ T cell infiltration to impede anti-tumor immunity, suggesting new therapeutic opportunities.


Assuntos
Linfócitos do Interstício Tumoral/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiotaxia/fisiologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Diester Fosfórico Hidrolases/fisiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
14.
Eur J Immunol ; 51(8): 1911-1920, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34106465

RESUMO

Immunotherapy targeting the Programmed Death (PD-1) receptor/ligand (L) "checkpoint" rapidly gains ground in the treatment of many cancer types. To increase treatment scope and efficacy, predictive biomarkers and rational selection of co-treatments are required. To meet these demands, we must understand PD-1 function in detail. We here outline recent insights into the regulation of the CD8+ T cell response by PD-1. The prevailing view has been that blockade of PD-1/ligand (L) interaction "reinvigorates" cytotoxic T lymphocytes (CTL) that were rendered dysfunctional in the tumor microenvironment (TME). However, this review stresses that tumors continuously communicate with adjacent draining lymph nodes (LNs) and that the PD-1 checkpoint also operates during T cell priming. We clarify the role of the PD-(L)1 system at the T cell/DC interface, where it regulates T cell receptor (TCR) signaling and CD28 costimulation and thus controls activation of tumor-specific T cells. We also highlight the importance of CD4+ T cell help during priming, which allows DCs to provide other costimulatory and cytokine signals required for optimal CTL differentiation and likely avoidance of a dysfunctional state. Therefore, we pose that PD-(L)1 blockade should exploit LN function and be combined with "help" signals to optimize CTL efficacy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Linfócitos T CD4-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T Citotóxicos/imunologia
15.
Cancer Immunol Immunother ; 70(11): 3167-3181, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33796917

RESUMO

Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.


Assuntos
Técnicas de Cultura de Células/métodos , Células Dendríticas/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Apresentação de Antígeno/imunologia , Antígenos CD34 , Apresentação Cruzada/imunologia , Humanos , Ativação Linfocitária/imunologia
16.
Front Immunol ; 12: 621665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815375

RESUMO

Toll-like receptor 5 (TLR5) is the receptor of bacterial Flagellin. Reportedly, TLR5 engagement helps to combat infections, especially at mucosal sites, by evoking responses from epithelial cells and immune cells. Here we report that TLR5 is expressed on a previously defined bipotent progenitor of macrophages (MΦs) and osteoclasts (OCs) that resides in the mouse bone marrow (BM) and circulates at low frequency in the blood. In vitro, Flagellin promoted the generation of MΦs, but not OCs from this progenitor. In vivo, MΦ/OC progenitors were recruited from the blood into the lung upon intranasal inoculation of Flagellin, where they rapidly differentiated into MΦs. Recruitment of the MΦ/OC progenitors into the lung was likely promoted by the CCL2/CCR2 axis, since the progenitors expressed CCR2 and type 2 alveolar epithelial cells (AECs) produced CCL2 upon stimulation by Flagellin. Moreover, CCR2 blockade reduced migration of the MΦ/OC progenitors toward lung lavage fluid (LLF) from Flagellin-inoculated mice. Our study points to a novel role of the Flagellin/TLR5 axis in recruiting circulating MΦ/OC progenitors into infected tissue and stimulating these progenitors to locally differentiate into MΦs. The progenitor pathway to produce MΦs may act, next to monocyte recruitment, to fortify host protection against bacterial infection at mucosal sites.


Assuntos
Flagelina/metabolismo , Pulmão/imunologia , Macrófagos/fisiologia , Células Progenitoras Mieloides/fisiologia , Osteoclastos/fisiologia , Receptor 5 Toll-Like/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Transdução de Sinais
17.
Front Immunol ; 11: 592569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123174

RESUMO

Persistent antigen exposure in chronic infection and cancer has been proposed to lead to cytotoxic T lymphocyte (CTL) "exhaustion", i.e., loss of effector function and disease control. Recent work identifies a population of poorly differentiated TCF-1+PD-1+ CD8+ T cells as precursors of the terminally exhausted CTL pool. These "predysfunctional" CTLs are suggested to respond to PD-1 targeted therapy by giving rise to a pool of functional CTLs. Supported by gene expression analyses, we present a model in which lack of CD4+ T cell help during CD8+ T cell priming results in the formation of predysfunctional CTLs. Our model implies that predysfunctional CTLs are formed during priming and that the remedy for CTL dysfunction is to provide "help" signals for generation of optimal CTL effectors. We substantiate that this may be achieved by engaging CD4+ T cells in new CD8+ T cell priming, or by combined PD-1 blocking and CD27 agonism with available immunotherapeutic antibodies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Contagem de Linfócitos , Camundongos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma
18.
Nat Metab ; 2(10): 1046-1061, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958937

RESUMO

Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.


Assuntos
Glicólise/efeitos dos fármacos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Complexo CD3/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Metaboloma , Fosfatidilinositol 3-Quinases/metabolismo , RNA/química , Receptores Tipo II do Fator de Necrose Tumoral/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Blood ; 136(19): 2188-2199, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32750121

RESUMO

Langerhans cell histiocytosis (LCH) is a myeloid neoplasia, driven by sporadic activating mutations in the MAPK pathway. The misguided myeloid dendritic cell (DC) model proposes that high-risk, multisystem, risk-organ-positive (MS-RO+) LCH results from driver mutation in a bone marrow (BM)-resident multipotent hematopoietic progenitor, while low-risk, MS-RO- and single-system LCH would result from driver mutation in a circulating or tissue-resident, DC-committed precursor. We have examined the CD34+c-Kit+Flt3+ myeloid progenitor population as potential mutation carrier in all LCH disease manifestations. This population contains oligopotent progenitors of monocytes (Mo's)/macrophages (MΦs), osteoclasts (OCs), and DCs. CD34+c-Kit+Flt3+ cells from BM of MS-RO+ LCH patients produced Langerhans cell (LC)-like cells in vitro. Both LC-like and DC offspring from this progenitor carried the BRAF mutation, confirming their common origin. In both high- and low-risk LCH patients, CD34+c-Kit+Flt3+ progenitor frequency in blood was higher than in healthy donors. In one MS-RO+ LCH patient, CD34+c-Kit+Flt3+ cell frequency in blood and its BRAF-mutated offspring reported response to chemotherapy. CD34+c-Kit+Flt3+ progenitors from blood of both high- and low-risk LCH patients gave rise to DCs and LC-like cells in vitro, but the driver mutation was not easily detectable, likely due to low frequency of mutated progenitors. Mutant BRAF alleles were found in Mo's /MΦs, DCs, LC-like cells, and/or OC-like cells in lesions and/or Mo and DCs in blood of multiple low-risk patients. We therefore hypothesize that in both high- and low-risk LCH, the driver mutation is present in a BM-resident myeloid progenitor that can be mobilized to the blood.


Assuntos
Medula Óssea/patologia , Diferenciação Celular , Células Dendríticas/patologia , Histiocitose de Células de Langerhans/patologia , Mutação , Células Progenitoras Mieloides/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/metabolismo , Humanos , Células Progenitoras Mieloides/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(34): 20706-20716, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32764145

RESUMO

Cytotoxic T cell differentiation is guided by epigenome adaptations, but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T cell-specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation toward a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Mechanistically, DOT1L controlled CD8+ T cell differentiation by ensuring normal T cell receptor density and signaling. DOT1L also maintained epigenetic identity, in part by indirectly supporting the repression of developmentally regulated genes. Finally, deletion of Dot1L in T cells resulted in an impaired immune response. Through our study, DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and controlling epigenetic integrity.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/genética , Epigênese Genética/genética , Epigenômica , Feminino , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Masculino , Metiltransferases/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...